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ABSTRACT Identifying the orientation and location of a camera placed arbitrarily in a room is a challenging
problem. Existing approaches impose common assumptions (e.g. the ground plane is the largest plane in the
scene, the camera roll angle is zero). We present a method for estimating the ground plane and camera
orientation in an unknown indoor environment given RGB-D data (colour and depth) from a camera with
arbitrary orientation and location assuming that at least one person can be seem smoothly moving within
the camera field of view with their body perpendicular to the ground plane. From a set of RGB-D data trials
captured using a Kinect sensor, we develop an approach to identify potential ground planes, cluster objects in
the scenes and find 2D Scale-Invariant Feature Transform (SIFT) keypoints for those objects, and then build a
motion sequence for each object by evaluating the intersection of each object’s histogram in three dimensions
across frames. After finding the reliable homography for all objects, we identify the moving human object
by checking the change in the histogram intersection, object dimensions and the trajectory vector of the
homgraphy decomposition. We then estimate the ground plane from the potential planes using the normal
vector of the homography decomposition, the trajectory vector, and the spatial relationship of the planes to
the other objects in the scene. Our results show that the ground plane can be successfully detected, if visible,
regardless of camera orientation, ground plane size, and movement speed of the human. We evaluated our
approach on our own data and on three public datasets, robustly estimating the ground plane in all indoor
scenarios. Our successful approach substantially reduces restrictions on a prior knowledge of the ground
plane, and has broad application in conditions where environments are dynamic and cluttered, as well as
fields such as automated robotics, localization and mapping.

INDEX TERMS Image motion analysis, image segmentation, sensor orientation detection, ground plane
detection.

I. INTRODUCTION
With one additional dimension, 3D data provide a more
intuitive and realistic environmental perspective in computer
vision applications than traditional 2D data. By combining
traditional 2D RGB data with depth information, 3D data
create a more comprehensive digital representation of real
world environments, providing considerable value in many
applications such as training and simulation [1]–[3], con-
struction [4]–[6] and gaming [7]–[10]. The benefits of 3D
data over 2D data are particularly noticeable in cluttered
or dynamic environments. In these complex environments,
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3D data allow enhanced visual understandings, improved
precision and accuracy, easier risk/issue identification and
analysis, and intuitive model manipulation [11]–[15]. For
example, operating rooms typically have many objects that
frequently change depending on the nature of the emergency,
including multiple humans who enter and exit the room and
interact with the objects and each other. Constructing an
accurate 3Dmodel of an operating room and recording videos
of various processes within the room could create a helpful
and interactive tool for training and simulation, or be used in
real time to observe and monitor the room. For applications
like gaming, the room is often modified to accommodate
placement of a sensor (i.e., clearing out a space), the sensor
is intentionally located in an ideal position, and users are
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willing to undergo a calibration process if necessary. How-
ever, the applications we consider, such as the operating
room, are complex, dynamic and cluttered real-world envi-
ronments, where the sensor must be located out of the way
of the processes or occupants of the room, and systems using
the sensor would need to auto-calibrate because occupants of
the room are unlikely to be willing to perform calibrations.
Accordingly, in applications in these complex environments,
the sensor’s location and orientation in the room will gener-
ally be unknown (e.g., the sensor’s field of view cannot be
assumed to be parallel to the ground). In this paper, we focus
on addressing the difficulties of estimating the ground plane
and finding the camera orientation in a indoor environment
without any prior knowledge of the sensor or room.

In order to process image information from a unknown
environment, knowledge of the ground plane, and hence
the position and orientation of the camera, is fundam-
ental [16]–[20]. Indeed, most computer vision algorithms
implicitly assume knowledge of the ground plane (e.g., that
the ground is at the ‘‘bottom’’ of the scene [17], [21], [22]
or is the largest plane [23], [25], [26]). However, in complex
environments with unknown sensor placement, the ground
plane may not be the largest visible plane (e.g., many objects
on the ground) or at the ‘‘bottom’’ of the scene (e.g., overhead
perspectives). Still, identifying the ground plane, and accord-
ingly the camera position and orientation, is critical for most
computer vision applications; especially for indoor track-
ing, exploring, navigation and scene analysis. For instance,
in Simultaneous Localization and Mapping (SLAM) appli-
cations, RGB-D data have been used to extract the plane
feature in indoor environments for localizing robot positions,
outperforming both accuracy and efficiency of the traditional
point feature-based methods, even with low image quality
devices [55], [56]. With the recognition of the ground
plane and camera orientation, the robot performs better
SLAM occlusion detection during mapping [57] and obstacle
detection [58]. In addition, finding the ground plane and
calculating the camera orientation also facilitates improved
3D registration and 3D reconstruction of data from multiple
sensors viewing the same scene by converting a 3D problem
into a 2D problem. Ultimately our goal is estimating the
ground plane for each sensor in a multi-sensor system, such
that the ground can be used as a reference for finding the
positions and orientations of each sensor relative to each
other, which will facilitate the reliable 3D reconstruction of a
complex room.

To accomplish our goal, we aim to develop a system that
estimates the ground plane, camera orientations and rela-
tive locations of multiple RGB-D sensors with unknown
positions and orientations in an indoor environment. Our
only assumptions are: that most of at least one person can
be seen smoothly moving in the RGB-D camera field of
view; the person’s body is perpendicular to the ground plane
while moving; and the RGB-D camera’s position and orien-
tation remain unchanged until the ground plane estimation is
complete. In order to estimate the ground plane under this

condition, we combine the robustness of 3D Random Sample
Consensus (RANSAC) and 2D homography decomposition.
While 3D RANSAC extracts useful spatial information from
each 3D point cloud segment, 2D homography decompo-
sition constructs homography planes from people walking
on the ground. Our approach even accommodates scenarios
where the ground plane is a small region (i.e., barely visible)
or even not visible in the field of view (FOV) of the sensor by
utilizing other visible planes that are parallel to the trajectory
of movement and estimating the actual ground plane.

II. RELATED WORK
Existing ground plane detection can be broadly categorized
into 2D or 3D approaches based on the sensor type.Within 2D
approaches, the most popular approach for ground plane
estimation is homography. For example, homography-based
approaches have been used to first find the feature key points
in the scene, followed by Kalman filtering [27] or Modified
Expectation Maximization [28] to build confidence in the
ground plane transformationmatrix across successive frames.
These two approaches assumed the roll angle of sensors are
zero and the camera only see the ground plane with objects
above the plane. Homography has also been successfully used
as a first step, with the homography decomposition results
combined with a Bayes filter [29] or contour searching [30]
to estimate the ground plane with 2D images. However, again
the ground plane is assumed to be the area in front of the
camera [29], or the single colour ground plane is assumed to
occupy the majority of the FOV [30]. Other 2D approaches
have used depth-image data or V-disparity values (the his-
togram of the disparity map [31]) rather than traditional RGB
image data [23], [24]. Zhi Jin et al. [32] proposed a depth-map
driven ground plane detection algorithm by growing a plane
starting from the the largest area having similar depth val-
ues in the depth map, assuming the largest plane was the
ground plane. Kircali and Tek [33] estimated the ground
plane based on comparing the depth map of each new frame
with a pre-calibrated depth map in which the ground plane
was pre-defined. Assuming the majority area in the scene
comprises the ground plane, the gradient of the V-disparity
pixel values has also been successfully used to identify the
ground plane with an arbitrary camera roll angle [23]. Fur-
thermore, Cherian et al. [35] applied multiple texture based
filters with a Markov Random Field to reconstruct the depth
map from a single RGB image and estimate the ground plane
based on texture-based searching segmentation. Due to the
intrinsic features of the algorithm, this approach assumes
the camera is parallel to the ground plane, and that the
ground plane has a unique texture. Dragon et al. [34], [36]
proposed an approach where RGB frames captured from a
moving sensor are iteratively split into regions until reliable
homographies can be estimated from the feature points within
these regions. The decomposition of the homographywith the
highest probability indicates the orientation and ego motion
of the sensor’s movement. Unfortunately, this approach is
not suitable for indoor environments with a stationary sensor
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because moving objects will be a small proportion of the
scene, making it hard to distinguish between a homography
generated from mismatched key points and a homography
from a moving object. Further, their solution requires the
shape of moving objects to remain unchanged to ensure suc-
cessful feature correspondence between frames; a condition
that cannot be guaranteed in indoor environments with an
arbitrary fixed perspective. More recently, a ground plane
estimation approach using monocular images with a prede-
fined region of interest [38] was developed, but requires a
known pitch angle. Although the above 2D approaches can
successfully identify the ground plane, none of them work
in dynamic or cluttered environments where the location and
orientation of the sensor is unknown.

Ground plane estimation approaches in 3D commonly uti-
lize 3D Hough transform or 3D RANSAC with the raw data.
For example, a 3D Hough transform with a ball-based accu-
mulator, which collects the vote values [37], has been used
to define the ground plane based on the highest vote among
accumulators [41]. Due to the voting procedure, this approach
can only find the ground plane if it is the largest plane in the
scene. 3D RANSAC, a more direct and brute-force approach,
has been used on raw 3D data to find the ground plane
with the assumption that the ground plane is the closest or
largest plane in the camera FOV [21]. Other 3D approaches
have used an estimation of the 3D normal vector for each
raw data point rather than the raw points directly (e.g., [42]
and [43]), but assume that the camera roll and pitch angles
are zero. More recently, machine learning and a depth mask
has been used, but requires minimal orientation variations
(i.e., 0 ∼ 15◦) [39]. Ground plane estimation has also been
integrated into bigger applications (e.g., [21], [40], [57]), but
they also share the common constraints, such as zero roll
rotation or the ground plane being the largest plane. Similar to
promising 2D ground plane approaches, these 3D approaches
will also not work in cluttered or dynamic environments
because of their underlying assumptions.

Together, the most robust and reliable 2D and 3D methods
of finding the ground plane have common assumptions or
predicates, such as the known and unchanged orientation
of the camera, the ground plane being the largest plane in
the field of view, the shape of moving objects in the scene
remaining unchanged, the ground plane having a single color
or depth value, or the ground plane only appearing at a certain
location within the camera’s FOV. While these assumptions
restrict the complication of the ground plane estimation prob-
lem based on the requirements of specific applications, they
cannot be used in real-world scenarios where the camera
location and orientation are unknown, and the environment is
complex, cluttered or dynamic. To overcome the limitations
of these assumptions for our application, we build on the
approach of Dragon et al. [34], [36] because the assumptions
of their approach are closest to our conditions. Notably, while
their approach requires the sensor to be moving, we assume
that the sensor is stationary and something in the scene is
instead moving. In our case, we will restrict our interest to a

human moving in the scene, though this does not necessarily
need to be the case. We present our approach to accomplish
this in section III followed by our experimental setup and
results in section IV. We then present our discussion and
future work in section V.

III. METHODOLOGY
Our ground plane estimation approach combines the robust-
ness of 2D and 3D computer vision algorithms. The major
components of our approach are: 1) Data pre-processing
(section III-A) where we described the preparation of 2D
and 3D data with corresponding features; 2) 2D homogra-
phy decomposition (section III-B), where we decomposed
the 2D homography according to 3D feature restrictions to
estimate the trajectory of any moving humanoid objects in
the scene; and 3) 3D ground plane estimation (section III-C)
where we derived the most probable ground plane by refin-
ing 2D homography decomposition results into confidence
estimates.

A. DATA PRE-PROCESSING
To obtain a more useful 3D data representation, we first
generated a 3D point cloud from the RGB-D data using the
intrinsic and extrinsic parameters of the sensor. We calibrated
using Zhang’s approach with the intrinsic parameter matrix

defined as: [44]: Kc =
[fmx γ u0

0 fmy v0
0 0 1

]
, where f is the focal

length, mx and my are the scale factor in the image x- and
y-axes, γ is the skew coefficient between the x and y axes,
and (u0, v0) is the principal point. The extrinsic parameter

matrix is [
R3×3 T3×1
01×3 1

], composed of rotation and translation

parameters R and T . Finally, using radial distortion k1, k2, k3
and tangential distortion p1, p2 coefficients, we calculated
the camera matrix C by multiplying the intrinsic and extrin-
sic matrices, such that the depth images were undistorted
based on camera parameters and distortion coefficients [45]
according to

x ′ = p2(3x2 + y2)+ x(k2(x2 + y2)

+k1(x2 + y2)+ 1)+ 2P1xy (1)

y′ = p1(x2 + 3y2)+ y(k2(x2 + y2)2

+k1(x2 + y2)+ 1)+ 2p2xy (2)

z′ = z (3)

From Eqs.(1), (2) and (3), the coordinates (x, y) and value
of each pixel z in each depth image was transformed to an
individual point (x ′, y′, z′) in the associated 3D point cloud.

In general, the point cloud of an indoor environment is
composed of planes (e.g., walls, floor), objects (e.g, draw-
ers, chairs), and humans, though in some cases substantial
portions of objects are also planes (e.g., desks). In a cluttered
environment with unknown camera location and orientation,
the ground plane may not be visible (e.g., if the sensor is
on the ground facing up), or may be any region varying
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from a small region that is highly occluded by objects to
the largest visible plane. Therefore, after down-sampling the
point cloud by applying a voxel grid filter, we segmented the
point cloud into planes and non-planar objects. First, we itera-
tively extracted, stored and removed the largest plane from the
remaining point cloud, which is generated from the previous
iteration, until the number of remaining points is less than
20% of the total points in the original point cloud, using Ran-
dom Sample Consensus(RANSAC) [46] (See Algorithm 1).

Algorithm 1 Plane Extraction
1: procedure extract_PC_Planes(pointCloud)
2: planes← []
3: pc← pointCloud
4: originSize← Size of pc
5: while Size of pc > 20%originSize do
6: plane← RANSAC(pc)
7: if Size of plane < Threshold then
8: break;
9: planes← ps

10: pc← pc− plane
11: returnplanes, pc

After we stored and removed the planes in the scene,
we segmented the remaining point cloud into non-planar
objects using Euclidean clustering [47]. We first employed
Euclidean clustering to find groups of points that were phys-
ically close to each other, and then we stored all clustered
objects So and extracted planes Sp.

To identify which clustered objects are moving in the scene
in preparation for homography estimation, we needed to find
corresponding objects between successive frames. We uti-
lized SIFT [48] as the feature extractor on the RGB images
to derive 2D feature points. SIFT was able to generate a
sufficient number of 2D features for each object in the scenes;
particularly for any humans. Additionally, SIFT accommo-
dates a wide range of performance control through variation
of the octave layer number nOct , edge-like feature filter
threshold eThresh, and the sigma of Gaussian filter σ [49],
allowing excellent optimization for keypoint detection. For
each RGB frame, the 2D feature points were stored as an
output of the data preparation phase, along with the 3D points
of the clustered objects and the extracted planes.

B. HOMOGRAPHY ESTIMATION
A homography matrix [50] can be computed by matching
features in two RGB images of an object captured by two
cameras at different locations [27]. Since we assume the
camera is static and humans move on the ground plane,
we calculate the homography matrix using SIFT keypoints in
two RGB frames, which are captured at time t and t + 1t ,
from a single sensor, using the moving humans as motion
reference points. We used the homography between moving
objects across successive frames to construct a plane that is
perpendicular to the ground plane. With a minimal sample set

of four feature key point correspondences between frames at
time t and time t +1t , a nine-parameter homography matrix

H =
[h11 h12 h13
h21 h22 h23
h31 h32 h33

]
can be generated, which represents the

transformation between 2D points in image coordinates and
3D points in the camera coordinate system.

To find which objects were moving between successive
frames, we implemented the Blockwise Linearity Assump-
tion (see [34]). Instead of generating a result from each pair
of consecutive frames, the Blockwise Linearity Assumption
estimates an average result from an N-length block of frames
by processing the first frame of the block, which is used as
reference frame, and the ith frame in the block (where 1 <
i ≤ N ). Assuming the human moves reasonably smoothly
over the ground plane, the changes between the 1st ∼ ith

frame pair and the 1st ∼ (i + 1)th frame pair within one
blockwill grow linearly.We segmented the entire data set into
blocks B = {F1,F2, . . .Fx} of frames F ranging from frame
1 to x. Let S1o and S2o denote all the object segments in the
first and second point clouds representing a pair of successive
frames. We calculated the 1-D histogram of three dimensions
Histx , Histy, Histz for each object segment S1oi and S

2
oj . Then,

we matched a pair of object segments in F1 and Fx that repre-
sented the same object Oi by determining if the intersection
ratio, which is the Jaccard index [54] of the pair of object
segments

intersectionxoi =
A(S1oi ) ∩ A(S

x
oj )

A(S1oi )
(4)

between the histogram areas of S1oi and S2oj was greater
than zero, and decreased as x increased. To ensure the his-
togram intersection was larger than zero between the first
frame F1 and frame Fx , we chose a small block size similar
to [34], [36]. The resulting list of matched pairs of 3D objects
S1oi and S

2
oj , including any moving humans, were projected to

2D pixel clusters C1
oi and C

2
oj according to

x = x ′(1+ k1r2 + k2r4)+ 2p1x ′y′

+p2(r2 + 2′2) (5)

y = y′(1+ k1r2 + k2r4)+ 2p2x ′y′

+p1(r2 + 2y′2), (6)

where (x ′, y′) denotes the x and y values of a 3D point
(x ′, y′, z′), (x, y) denotes the corresponding distorted pixel
coordinates and r =

√
x ′2 + y′2. Consequently, each 2D pixel

cluster Cx
oi is then converted to a 2D feature point cluster

Rxoi by using each 2D pixel (xi, yi) as the center point and
searching for the closest feature points within the radius τ ,
shown in Figure 1(a).
We removed any feature keypoints that were outside of the

regions, and applied Motion-Split-And-Merge (MSAM) [36]
to each pair of corresponding regions R1oi and R

x
oj in F1 and

Fx respectively to find the most reliable keypoint clusters
Cx
ki for generating homography matrices H x

oi (Figure 1(b)).
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FIGURE 1. 2D human feature keypoint cluster example.

The homography matrix, which is directly generated from
human feature points Rxoi , can be unreliable because of the
different movement patterns of human heads, chest, arms
and legs. MSAM accounts for these differing movement
patterns by finding the most reliable keypoints (most likely
keypoints that are within head or body region) out of the set
Rxoi , allowing a reliable homography matrix to be generated
that represents the human’s stable movement through a block
B(e.g, [60], [61]). Similarly, the MSAM result H x

oi indicates
the movement of a Rxoi cluster without any prior knowledge
or assumption. We then decomposed each homography H x

oi
into the four plane normal vector, trajectory vector, and rota-
tion vector solutions Dx

oi1∼4
= {Eni

oi1∼4
,Et i
oi1∼4

, Er i
oi1∼4
} [51],

and filtered out the invalid solutions to construct the most
reliable decomposition solution BRo = {Enoi ,Etoi , Eroi} for
each 2D object region Roi within a block. Here, invalid
homography solutions were characterized by checking if a
2D key point (xi, yi) and a 3D point cloud point (x ′i , y

′
i, z
′
i)

within region Roj , which yields z′i < 0
(
(x ′i , y

′
i, z
′
i) =

H (xi, yi, 1) and EnToi (x
′
i , y
′
i, z
′
i) = 1

)
, exists [34]. Finally,

we built the set of all the moving objects in the scene Smoi
by extracting the object regions that had large and suc-
cessively decreasing differences in intersection coefficient
intersectionxoi among all objects O in a block. Based on
the decomposition result and the assumption that the person
body is perpendicular to the ground plane while moving,
we use three conditions, which includes the longest edgeEl of
moving object bounding boxes larger than a length threshold
Threshl ; the ratios between the longest edge El and other two
edges are larger than a ratio threshold Threshr ; and trajectory
vectorEt ioi is perpendicular to the longest edge of object bound-
ing box El , to determine the moving humanoid object among
all moving objects [62]. The homography decomposition
result of the moving objects in a block were the output of
this phase, allowing us to estimate the ground plane out of
the candidate planes extracted in section III-A.

C. GROUND PLANE ESTIMATION
According to the assumption that a person is moving on the
ground, the ground plane is then the plane that best satisfies
the following criteria:
c1: its normal is parallel to the plane that is defined by the

block homography decomposition’s normal vector and
trajectory vector for the moving object;

c2: it is parallel to the trajectory vector of any moving
object;

c3: it does not dissect any objects in the scene;
c4: it is close to the object segments So in the scene, and in

particular to moving objects.
Based on these criteria we built a confidence estimate cas-
caded filter to score the likeliness that an extracted plane
is the ground plane, ranging from 0 (very unlikely) to 10
(very likely), from the complex and noisy 3D environment.
Conceptually, we found all horizontal planes (those parallel
to the homography’s normal and trajectory vector) from all
known planes.We then increased or decreased our confidence
in horizontal planes based on their proximity to the bound-
ary of the 3D scene. Finally, we adjusted our confidence
estimates based on each plane’s relationship to objects in
the scene, prioritizing their spatial relationship to moving
objects. To distinguish between low-confidence valid planes
and invalid planes, whose confidence estimates are reduced
by our cascaded filter, we assigned an small initial confidence
confI = 1 to each of the extracted planes Sp that were found
in section III-A. We then evaluated the fit of each plane to
our criteria to complete our confidence estimates. The overall
confidence of each potential ground plane is found as:

confSpp = confI + confHD + confRP + confOD (7)

where confHD, confRP, confOD represent Homography
Decomposition Checking confidence, Relative Position
Checking confidence, and Object Distance Checking confi-
dence respectively.

1) HOMOGRAPHY DECOMPOSITION CHECKING FILTER
We scored each ground plane according to criteria c1 and
c2: how parallel each potential ground plane is to both
the trajectory and the block homography decomposition of
each human moving object. To identify the moving objects
that were likely humans, we employed a heuristic. Since
the camera orientation was arbitrary, we used the normal
vector Enppi of each Spi as the camera’s reference orienta-
tion. The complementary angle of the angle between Enppi
and the x-axis θEnx indicates the roll angle of the camera,
while the complementary angle of the angle between Enppi
and the z-axis θEnz indicates the pitch angle of the camera.
Hence, the roll rotation matrix and pitch rotation matrix

were generated by: Rroll =

cos(CθEnx ) − sin(CθEnx ) 0
sin(CθEnx ) cos(CθEnx ) 0

0 0 1

 and

Rpitch =

1 0 0
0 cos(−CθEnz ) − sin(−CθEnz )
0 sin(−CθEnz ) cos(−CθEnz )

 based on right hand

rule, whereCθEnx andCθEnz represent the complementary angles
of the roll and pitch angles respectively. After we transformed
each moving object Smoi with its corresponding rotation
matrices Rroll and Rpitch to ensure the bounding box of Smoi
aligned with the x-, y- and z-axis, we determined whether the
moving object was humanoid based on three conditions:
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1) The longest dimension was at least 1.5 times larger than
the other two dimensions [59];

2) The longest edge of the bounding box was longer than a
learned threshold; and

3) The trajectory vector Etmoi was perpendicular to the
longest edge of the bounding box.

Wefirst represented each humanmoving object Smoi as the 3D
plane Phomooi , constructed from the normal vector Enmoi and the
trajectory vector Etmoi . The contribution of the Homography
Decomposition Checking confidence to the overall confi-
dence estimate cascaded filter was:

confHD = 2 cos θ (8)

where θ is the angle between the normal Phomooi and the
normal of Spi . The cosine of the angle is used to ensure that
a small penalty is applied to planes that are nearly parallel
(likely due to sensor noise), but a large penalty to planes
that are not parallel. The constant scaling factor of two is
the associated weight of this component relative to the other
components of the confidence estimate cascaded filter. Since
the confidence only represents the likelihood that a plane is
horizontal, the associated weight factor is comparably small,
while ensuring that the confidence score of planes that have
a large θ angle are reduce to zero. Additionally, for each
moving object, we generated a set of planes that were parallel
to the movement of Phomooi as Sppi .

2) RELATIVE POSITION CHECKING FILTER
We scored each plane in Sppi according to criteria c3: how
likely it is that potential ground planes do not dissect objects
in the scene. In most cases, the ground plane will not have
objects on both sides of it while other planes (e.g., tabletops)
can have objects on both sides. In the exceptional scenario,
where the floor contains planes with multiple height values
(e.g. stairs or theater stages) and the personwalks on the plane
that has the higher height value, our confidence estimate
directly relates to the size of each plane and the difference
between the sensor and the two planes. We will discuss this
rare scenario in the Section V. Furthermore, this filter was
essential for remediating the effects of noise and sensor depth
error in the data. We represented each plane Sppi by it’s plane
equation:

ρ = ax + by+ cz+ d (9)

The value of ρ will be positive, zero, or negative, indicating
which side of the plane the point is on, or whether the point
is on the plane. We applied the 3D coordinates (x ′, y′, z′)
of each point in each Sppi to Eq.(9), recording the number
of positive ρ+ and negative ρ− results, the maximum dis-
tance dmax+i from the points above the plane to plane Sppi ,
and the maximum distance dmax−i from the points below the
plane to plane Sppi . The contribution of the Relative Position
Checking score to the overall confidence estimate function
was represented by:

confRP = 2 cos(
ρ+

ρ+ + ρ−
) (10)

Again, the cosine of the proportion of points on one side of
the plane was used to apply a smaller penalty from objects
that are on one side of the plane and a larger penalty from
objects that are on both sides of the plane. Additionally,
similar to the Homography Decomposition Checking Filter
factor, the constant scale factor of two again is the relative
weight of this component to the overall confidence estimate.

3) OBJECT DISTANCES CHECKING FILTER
Finally, we scored each plane in Spp according to criteria
c4: how close all objects in the scene So are to the potential
ground planes. Here, we utilized the knowledge that far more
objects will be on the ground than any other plane, and in
particular that people walk on the ground plane. Since some
objects, such as decorations or lights can be on potential
ground planes like the ceiling or walls, we assign higher
weights to moving objects.

In order to calculate the object-to-plane distances, we align
all the 3D object segments So and planes Sppi to the axes
by applying roll and pitch rotation matrices Rroll and Rpitch
found in section III-B. Since the ground plane is likely to
be the highest or lowest plane in a 3D point cloud, our
confidence estimate increased or decreased proportionally
when the object-to-plane distance was smaller or larger than
a learned value of one-fourth of the point cloud height. The
contribution of the Object Distance Checking score to the
overall confidence estimate function was represented by:

confOD = ks
Ns∑
i=1

( h
4 − DSsoi

)
h
4

+kmo
Nmo∑
i=1

( h
4 − DSmoi

)
h
4

(11)

ks =
5

Ns +WmoNmo
(12)

kmo = Wmoks (13)

where ks and kmo are scaling factors for stationary andmoving
objects, DSsoi denotes the absolute distance between a station-
ary object to plane Sppi , DSmoi denotes the absolute distance
between a moving human object to plane Sppi , Ns and Nmo
denote the number of stationary object segments and the num-
ber of moving human objects,Wmo denotes the weight of the
moving human object, and h denotes the height of the point
cloud, as the confidence representation of each plane Sppi .
Additionally, the constant scale factor of five in Eq.(12) is the
relativeweight of this component, maximizing the confidence
of the real ground plane, and providing sufficient penalty to
reduce the confidence of planes in the middle of the room,
such as a table, to zero.

4) GROUND PLANE CONFIDENCE
A potential ground plane with a confidence estimate found
with Eq.(7) that exceeded a learned confidence threshold ζ
was then highly likely to be the true ground plane, suggesting
that no further processing was required. However, we could
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FIGURE 2. Ground plane estimation result examples with various camera orientations and locations.

FIGURE 3. Ground plane estimation result examples with special environmental scenarios.

only find the ground plane if the ground plane belonged to a
plane in the set Spp, and as such there may not be any planes
such that confSpp > ζ . In many practical cases, the actual
ground plane could be a small plane in the camera FOV,which
would cause the ground plane to be segmented as an object or
part of another object in So. Additionally, any surfaces that are
close to the true ground plane, but having a larger area than
the ground plane can lead to an incorrect identification of the
true ground plane. Finally, the ground plane may not actually
be visible in the scene. In these situations, we initiated a
secondary ground plane estimation.

5) SECONDARY GROUND PLANE ESTIMATION
In the case where no plane from Spp satisfied the condition
confSpp > ζ , we applied RANSAC to each 3D object segment
Soi , retrieving the largest plane within each object to generate
set Sppsd and iterating through the steps of sections III-A
to III-C. If no plane had a confidence confSpp > ζ after the
secondary estimation, the ground plane did not exist in the
camera FOV. In this scenario, the plane from Spp that had
the highest confidence was used to predict the ground plane.
Using the distances dmax+i and dmax−i from section III-C.2,
the ground plane formulawas estimated asAx+By+Cz+D =
dmax+i or Ax + By + Cz + D = −dmax−i , where (A,B,C,D)
are the plane coefficients, based on which Object Distance
Checking confidence was higher. However, if any plane in
Sppsd had a confidence confSppsd > ζ , the plane with the
highest confidence was selected as the actual ground plane.

IV. EXPERIMENTS
We evaluated our algorithm on our own dataset of generated
video sequences, as well as on all relevant video sequences
from three public datasets. In this way, we ensured our
algorithm was generalizable, repeatable, and insensitive to
artifacts that may be present in our own data collection.
Specifically, we focused on representative scenarios with:

a high variety of camera orientations; camera locations;
ground plane size, shape and visibility; and room and occu-
pant complexity.

A. GENERATED VIDEO SEQUENCE DATA
We collected video sequence data using the Kinect v1 which
provides an RGB image and a depth image with a 27 frame
per second rate (FPS) on average, image data we combine
to form an RGB-D image, using a MacBook Pro (Retina,
13-inch, Mid 2014) with Dual core i5 CPU and 8G mem-
ory. We recorded video sequences by placing the camera
in 24 unique scenarios, which included various combina-
tions of different camera orientations and locations, multiple
planes, multiple people, diverse moving speeds, and various
body appearance ratios.

Our captured video sequences contained 40-140 data
frames from the time the first person entered the camera’s
field of view or started moving to the time the last person
left the camera FOV or stopped moving. Similar to the work
of [36], we chose an MSAM block size of five frames. From
experimentation, we determined that planes with a confi-
dence score ζ > 8.5 are highly likely to be the actual ground
plane, while planes with a confidence score of 6.0 < ζ < 8.5
are planes that are parallel to the ground plane, and may be
the ground plane. Based on our experimental results, theWmo
for the Object Distances Checking step in Section III-C is
optimally set to 8.0 to ensuring the moving person becomes
the decisive factor among all other stationary objects and
noise. Figures 2 and 3 demonstrate some representative data
sets and examples of our ground plane estimation results.

In the data preparation step, SIFT generated an average of
approximately 4,000 keypoints in each full 2D image with
10 layers in each octave, 0.02 as contrast threshold, 20 as
filter out edge-like features threshold, and 1.0 as sigma. The
size of voxel grid down-sample filter for point cloud frames
we selected was 2cm. The RANSAC distance threshold and

82030 VOLUME 8, 2020



C. Zhang, S. Czarnuch: Perspective Independent Ground Plane Estimation

FIGURE 4. Ground plane estimation result examples from public dataset sequences.

TABLE 1. Private dataset detailed results.

the cluster tolerance of Euclidean clustering were 2.5 and
2 times the voxel grid filter size respectively. Based on these
parameter, we extracted anywhere from 4 to 10 planes from
each scene, varying based on the indoor environment com-
plexity and camera perspective. In the homography estima-
tion step (section III-B), we set the block size to five to
ensure we achieve sufficient histogram intersection between
the reference frame F1 and frame Fx . The number of SIFT
feature keypoints on the human ranged from 150 to 380 out
of the approximately 4,000 keypoints. In the experiments,
the confidence of the results exceeded 7.5 even if the ground
plane only occupied a small fraction in the FOVs in each
scene where the ground plane was visible. Table 1 shows
the confidence of the three planes that have the highest con-
fidence, the human object’s moving speed, the number of
frames the algorithm took to estimate the ground plane, and
the total number of ground plane candidates we had before the
ground plane estimation checking steps. Notably, in Fig.2(f),
the ground plane is not visible, so we do not identify any
actual ground plane; rather we estimate the ground plane

TABLE 2. Public dataset detailed results.

equation based on the ceiling plane function. For example,
the estimated ground plane function for Fig.2(f) is −0.046 ·
x + (−0.699 · y)+ 0.713 · z+ (−0.0) = 0, a scene in which
only the ceiling is visible.

B. PUBLIC DATASETS
We evaluated our algorithm’s accuracy on three pub-
lic datasets: the RGB-D People Dataset [63], [64],
the SBM-RGBD Dataset [66] and the TVPR Dataset [65].
The large ground plane that is directly visible in the RGB-D
People and TVPR Datasets allow our algorithm produce
high confidence estimates for the ground plane - even higher
than those generated from our more challenging data trials,
with results shown in Table 2. Figure 4 shows some sam-
ple results obtained from the dataset trials in these public
datasets.

V. DISCUSSION AND CONCLUSIONS
In this paper, we proposed a novel ground plane estimation
method using the combination of 2D and 3D data analyses.
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Existing ground plane detection approaches require that sig-
nificant assumptions are met (e.g., that the ground plane is the
largest plane in the scene, the ground plane is at the bottom
of the sensor field of view, that the ground plane is constant
in colour or texture). These assumptions are not practical in
dynamic or cluttered environments, or in situations where
the sensor orientation or location are unknown, requiring
more expensive and specialized equipment (e.g., to detect
sensor orientation). Our approach robustly finds the indoor
ground plane with unrestrictive assumptions: the sensors is
an RGB-D camera; at least one person smoothly walks in the
scene with most parts of the body visible within the camera
field of view; and the human body is perpendicular to the
ground plane while walking.

We first segment the point cloud that is generated from
a pair of RGB and depth images into planes and object
segments, while finding the SIFT 2D key points in the RGB
image. This fundamental step requires the large planes and
object segments corresponding to the real world objects and
a sufficient amount of 2D feature key points. In general
scenarios, our algorithm successfully segments all the planes
and objects in the scene and provides a sufficient amount
of SIFT feature points with the parameters we used in the
experiments. Our algorithm can fail for one MSAM block if
the majority of the human is not segmented as a single object
segment, if no planes can be found in the FOV (i.e., RANSAC
generates unreasonable planes), or if the 2D feature key
points are too sparse to generate reliable homographies. How-
ever, these issues were resolved for all our trials by processing
through the entire trial data set.

In the second step, we project 3D object segments to the 2D
RGB image to find the regions that only contain the keypoints
belonging to these objects, and apply MSAM to each region
to find the decomposition of reliable homographies. MSAM
splits the keypoints within each region in a tree structure
taking 30-60 seconds to process with parallel threads, which
makes real-time ground plane estimation unfeasible. Building
object segment sequences within one block and identifying
the human is achieved by calculating the histogram inter-
section ratio between two object segments. This approach is
sensitive to movement in any direction; it provided 90% accu-
racy while matching corresponding object segments within a
block, and only fails whenKinect sensor generates significant
depth error. In addition, because of the depth error of our
hardware sensor [52], [53], estimating the ground plane with
only one block is not guaranteed for a video sequence because
object translation could appear to occur in both directions for
short sequences.

The final step builds the ground plane estimation confi-
dence based on homography decomposition vectors, plane
relative positions, and the distances between the planes and
other objects. With only one iteration of the confidence
estimation, our algorithm successfully estimated any ground
plane that was large in the FOV. Only one additional iteration
was required to retrieve the ground plane if it was smaller
in the FOV. Our approach of identifying humans from all

FIGURE 5. Point cloud plane segments for stairs.

other objects is naive, mainly depending on the gross shape
of the moving object segment and the correlation between the
homography trajectory vector and moving object’s bounding
box. In some situations, such as if only the torso of the
human (which has a similar dimension in both the x− and
y−axes) is segmented as a moving object, our algorithm will
ignore this potentially valid segment. Similarly, sequences
exemplified in Figures 2(e) and 2(f) take significantly more
frames to estimate the ground plane because the movement
of the human’s arms and legs changed the bounding box’s
dimensions of the human. The current solution is processing
through the full trial data set until the algorithm identifies the
human body, while this issue could be potentially solved by
synchronizing with other sensor in the system viewing the
same scene from a different perspective. Furthermore, due to
the limitations of our camera’s depth sensor (specifically lens
distortion), any wall characterized by the x− and y − axes
often consisted of multiple layers of points. The RANSAC
algorithm in the data preparation step yielded one slice of
the wall as an object segment with approximately one third
probability, which had an almost equal distance to both the
ceiling and the ground plane. Conditions like this led to us
increasing the confidence weight of the moving objects rela-
tive to non-moving objects, enlarging the difference between
the ceiling’s confidence and the ground plane’s confidence.
Specific to the distortion issues associated with segmenting
the wall, we also increased the RANSAC distance threshold
between models to reduce the number of slices generated
from one wall; an issue that could easily be rectified by
using a sensor with a higher depth resolution and accu-
racy. Accordingly, the correct ground plane estimation results
heavily relied on finding the accurate human (moving object).
We noted that increasing the RANSAC distance threshold
between models also had drawbacks: multi-plane surfaces,
such as stairs (fig.3(b)) and stages (fig.3(a)), are merged as
one plane. Since the resulting single plane representing the
stairs has a large angle value relative to the ground plane
(fig.5; approximately 45◦), it is found by our algorithm as
a potential plane, but is ultimately given a low confidence
as the actual ground plane. (fig.3(b)). Similarly, the plane
corresponding to the stage floor barely exceeds our ζ > 6.0
threshold (fig.3(a)) because this plane (comprised of points
from the stage plane and lower ground plane) is not parallel
to the ground plane leading the low confidence provided by
the Object Distances Checking step.
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We evaluated our approach on our own dataset, which
included 24 unique scenarios (e.g., sensor perspectives and
orientations, number of persons walking in the scene), as well
as on three public datasets (see [63], [64], [66] and [65]),
where we included 26 additional scenarios. Our approach
robustly estimated the ground plane directly (when the plane
was visible) or indirectly (when the plane was not visible)
with a large variety of sensor orientations, different ground
plane area sizes, room complexities, and multiple persons in
the scene in 50 of 50 scenarios (100%). Our experimental
results show that our algorithm is insensitive to the movement
speed of walking humans and is tolerant to partial occlusion
of the human body. In cases where the ground plane is not
visible the scene, we successfully estimated the ground plane
formula by translating the plane with the highest confidence
in the scene, suggesting that other sensors that can see the
ground plane can help to accurately find the ground plane.
This is exemplified through two scenes (e.g., Figures 2(b)
and 2(f)) where we successfully identify the ground plane
directly in once case (confHP = 2.99, confRP = 2.0,
confOD = 3.99, confS = 8.99), and indirectly in another
(confHP = 2.56, confRP = 2.0, confOD = 0.0, confS = 4.56).
In all cases, we were able to find the ground plane or a
plane parallel to the ground plane using RGB-D sensors data
without any pre-calibration or a prior knowledge of the sensor
location or orientation.

In the future, we will focus on improving the perfor-
mance of the algorithm; switching to a better RGB-D sensors
which provides higher quality data; enhancing the robust-
ness and accuracy of the human object detection algorithm;
and achieving potential human recognition or identification
within a RGB-D camera system. In addition, we will also
test our algorithm on video sequences that have higher indoor
complexity and more people visible in the scene.
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